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Abstract. We show that properties like spectrum condition, analyticity of n-point func- 
tions, space-like clustering of correlation functions stronger than any inverse power, the 
Reeh-Schlieder property do hold in Galilei invariant quantum theory. Furthermore, the 
range of validity of Haag’s theorem is briefly discussed. The results seem to be of relevance 
both in the non-relativistic regime proper and as a hint that many of the properties typically 
attributed to relativistic field theories are actually a common feature of every theory with 
a zero mean-particle density and translation-invariant Hamiltonian. 

1. Introduction 

In this paper we should like to show that several quite useful properties which are at 
the basis of general relativistic quantum field theory also hold in a large part of the 
non-relativistic regime. These properties are the well known spectrum condition, 
analyticity of n-point functions, the Reeh-Schlieder property and strong space-like 
clustering. 

Our motivation is twofold. For one thing we want to show that, contrary, perhaps, 
to widespread belief, the well known Wightman axioms of relativistic quantum field 
theories are not characteristic for relativistic theories but are typical properties of 
systems having a zero particle density and a Hamiltonian commuting with translations. 
The usual Schrodinger theory also belongs to this class if treated properly, that is, if 
the interaction potential is not pinned at the origin. So the results shed some light 
on the fundamentality of some assumptions of field theory and their true origin. 

Furthermore, we believe that there are useful applications in the non-relativistic 
regime itself. Beside the usual n-body quantum theory, theories are also covered 
where particles are created and annihilated, that is, systems which are low-energy 
limits of the relativistic theory like the so-called ‘Galilee model’ as well as fully 
non-relativistic theories where e.g. molecules are allowed to disintegrate and recom- 
bine in scattering processes. 

In particular, the proof of the existence of strong space-like clustering of states at 
different times seems to be new even in the well known Schrodinger theory. 

In the following we deal exclusively with theories which admit a unitary representa- 
tion of the Galilei group. This class of theories allows for a rather complete characteri- 
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sation and is, on the other hand, highly non-trivial from the point of physics which 
will be exemplified in the following section. Systems with a finite mean particle density 
where the Galilei group is spontaneously broken (see e.g. Swieca 1967) will be 
discussed elsewhere. 

The paper is organised as follows. In 8 2 the physical representations of the Galilei 
group are discussed and the role of Haag’s theorem is clarified. In § 3 a general 
spectrum condition is proven which allows for a derivation of analyticity properties 
in § 4 and by which the proof of a Reeh-Schlieder property is accomplished. In § 5 
we prove a strong cluster property with respect to the space coordinates of n-point 
functions. 

2. Physical representations of the Galilei group and Haag’s theorem 

Contrary to the Poincare group, the physically relevant representations in the non- 
relativistic regime are the representations of the central extension of the Galilei group 
(for a rather complete discussion see LCvy-Leblond (197 1) and the references therein). 
The central element which serves as a superselection observable turns out to be the 
mass operator M. M commutes with the Hamiltonian, hence physics can be done in 
every mass superselection sector separately. 

It is a characteristic of these representations that the quantum fields carry a phase 
factor as in gauge theory: 

U(g)$(x, t)U(g)-’ = exp[im(4u2t + U  * ~ x ) ] l ~ ( g - ’ ( x ,  t ) )  (1) 

where U denotes the velocity, R rotations and m the mass of the field. 
In Lbvy-Leblond (1967) it is shown, by giving counter examples, that Haag’s 

theorem need not hold in the non-relativistic regime. As long as the mass superselec- 
tion rule is respected, one can even construct theories which allow particle creation 
and annihilation processes. One reason that one can construct interacting theories 
even in Fock space, results from the peculiar structure of the Lie algebra of the 
extended Galilei group where the Hamiltonian never occurs on the right-hand side 
of the commutation relations. On the other side the deeper reason is not so 
obvious since there exists an extension of Haag’s theorem to theories invariant under 
the Euclidean group (see e.g. Streit 1969, Emch 1972, or the review article of 
Wightman 1964). Studying these articles Haag’s theorem seems to be inescapable 
but there is a somewhat hidden assumption which seems completely natural to a 
physicist accustomed to relativistic quantum theory. Haag’s theorem holds under the 
assumption that the canonical momenta of the fields 

This assumption, on the other hand, is frequently not fulfilled in the non-relativistic 
regime. Hence a construction of non-trivial field theories in Fock space is possible. 
Theories with a non-zero particle density, especially with temperature T # 0 are more 
problematical. Here the correct representations of the field algebra seem to carry a 
‘particle’ and ‘hole’ structure, in other words, creation and annihilation operators 
show up together in the field operators, thus reestablishing a kind of particle-antipar- 
ticle symmetry. This phenomenon is connected with rTT, = a, &. We do not want to 
dwell any more on this interesting point here since it will be discussed elsewhere, In 
any case the discussion shows that non-trivial quantum field theories are possible like 
second quantisation of quantum theory, the Galilee model (LCvy-Leblond 1967) etc. 

are just 8 ,  I&. 
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3. Support properties of the energy-momentum spectrum 

We discuss exclusively, in this paper, the case where the particle number operators 
for the various particle sorts Ni do exist. The Hilbert space X is assumed to be the 
norm closure of the linear hull of the states with an arbitrary but finite number of 
particles, furthermore a vacuum state Cl is to exist which is invariant under the 
representation of the extended Galilei group U(g). 

Let H be the Hamilton operator, P the momentum operator. We assume 
throughout the paper [H, P] = 0, hence somewhat sloppily [dE,, dEk] = 0 where dE,, 
dEk are the spectral measures of H,  P. In the following we want to locate the joint 
spectrum of (H, P) in R4. To this end we define the subspace %?k c X. 

HrXk is again an SA operator on Rk; Hk := QkHQk with Qk the projection on Xk. 

The idea is to locate the spectrum of Hk in Xk. Let Ho be the free Hamiltonian, 
that is 

where the sum extends over the different types of particles occurring in the theory. 
The Fourier transformed version reads 

1 
Ho = - k2a:ai dk. J i 2mi (4) 

(In the following we shall deal, for simplicity, only with the simple dispersion law 
w - k 2  but a more general w (k) would not do any harm.) 

Since P commutes with the various Ni’s %k can again be written as a direct sum 
of finite particle subspaces. Let X{ni} denote the subspace with definite numbers ni 
of the various particles. For the free motion [Ho, Nil = 0, that is the support of the 
Ho spectrum in %!k n X { n i }  is 

With m := sup{mi} we have 

with N{ni }  := n,. a-- k 2  

2m N { n i }  I 

(In the second inequality the Cauchy-Schwartz inequality has been employed.) 
Hence the (Ho, P) spectrum is bounded from below in every finite particle subspace 

XM by the hypersurface w = (1 /2mN)k2 .  (One can get an analogous result by separat- 
ing the motion into centre-of-mass and relative coordinates.) On the other hand, 
while Galilei-invariant interactions H I  are allowed to change the particle numbers ni 
of a state cl/{ni} the mass of the state M = C nimi has to be conserved, that is, the 
Hamilton operator leaves every subspace XM with definite mass M invariant. This 
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motivates the following weak assumption (7) and has as a consequence the simple 
but useful lemma 1. 

With H = Ho +HI SA and %' = Z M  X M  we assume HI to be Ho-small in every 
subspace XM with relative bound U M  < 1, that is: 

IIHI($M)IIs aMllr- l~$Ml l++~l l$~l l  $M E D H o  Y X M  D H t  Y X M .  (7) 

Furthermore, HI = H -Ho commutes with P, hence 

IIQkHIQk($M,k)(l aMliQkHoQk($M,k)ll+bMl(I$M,kl/ $ M , k  E X M  n x k .  (8) 

Lemma 1. In every sector XM the number of particles is bounded from above by 
M m'-' and from below by M K1 with m'  := min{mi}, m := max{mi}. 

This enables us to prove the following theorem. 

Theorem 1. With H k ,  X k  n XM as defined above and under the condition (7) H is 
bounded from below in every X k  n XM with the bound 

with 

Proof. This is an application of the Kato-Rellich theorem to the above situation. The 
proof consists roughly of an investigation for what z E C 

1 +HI- 
H - z  Ho-2 Ho-Z )-' -- 1 

(9) 

is well defined as a bounded operator where the Ho smallness is used to infer the 
boundedness of the second factor on the RHS (see e.g. Kat0 1966, Reed and Simon 
1975). 

Since in our case the lower bound of Ho in %k is easily controllable we can weaken 
the condition (7) considerably. Let H I  be given as a symmetric quadratic form on the 
form domain Q(H0 Y X M )  of HO Y X M  for all M with 

($ IHI~!') U M  ($ IHo$)  + b M  (9 I$) aM<1 $CD(HOrXM) (10) 

then H rXM can be defined as a unique SA operator with Q ( H  1 % ~ )  = Q(Ho 1%'~) with 
the help of the (KLMN) theorem (see e.g. Reed and Simon 1975) and with general 
lower bound - 6 ~ .  In the special case discussed in this paper where we are interested 
in the reduced case H r%k n EM we are in a better position. 

Theorem 2. With the definitions as in theorem 1 and (10) we have 

Proof. This follows from an inspection of the proof of the (KLMN) theorem in Reed 
and Simon (1975). 
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Remark. Note that the class of allowed interactions in the second theorem is much 
larger than in theorem 1. On the other hand, the domain properties (e.g. domains 
of essential self-adjointness) of the various operators are much more involved. 

We shall take advantage of the two theorems in the following corollary. 

Corollary 1, The joint spectrum of (H,  P) in every subspace with definite mass %'M 

is bounded from below by the hypersurface 

Proof. The case of theorem 2 is obvious. As for theorem 1 we have for sufficiently 
large k :  a&& + b z b / ( l  - a ) ,  hence with a redefined b' we have the above statement 
since the spectrum is bounded from below for arbitrary k. 

Thus we see that the existence of a spectrum condition is not a typical relativistic 
phenomenon, In every subspace %'M we have an analogous condition in our non- 
relativistic theories. Since the subspaces for different M are mutually orthogonal this 
is almost the same as the full spectrum condition on the whole 2. But it can be seen 
from (6 )  that for M + 00, that is N + 00, the parabola which confines the spectrum 
from below becomes flatter and flatter. This derives from the particle number depen- 
dence of this bound which can not be removed. For N + CO we can distribute the 
various momenta ki in such a way that lZi kil > k but X i  k f / 2 m i  + 0. Hence on physical 
grounds there can be no overall spectrum condition. 

In the following section we want to employ these results to derive analyticity 
properties for the n-point functions of the theory. To this end we can put the results 
in a more appropriate form. 

Corollary 2. The joint spectrum of (H,  P) in every XM can be embedded in a domain 
K M  ur where KM is a sphere with sufficiently large diameter with centre (0, O)E R4 
and r the forward cone { (U,  k ) ;  w a I K  I}. 

Proof. The proof is obvious since for sufficiently large Ikl the parabola under discussion 
intersects every forward cone with arbitrary apex angle. 

4. Analyticity properties of n-point functions and a Reeh-Schlieder theorem 

We shall start with the 2-point function 

~ ( t ,  x)  := (cp leviHr eiP"4) cp, @ E %Me (11) 

The Fourier transform F(u ,  k )  is a measyre. With F ( w ,  k )  dw dk = 
(qldEH(o) dEp(k)@) it is obvious that the support of F is contained in K M  U r, hence: 

(12) 
Since KM U r\r is bounded, the analytic continuation with respect to ( t ,  x) into the 
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whole C4 is trivial for the first expression on the RHS. To continue the second integral 
we require that the expression remains bounded for a certain domain cC4.  With 
z o  := r - iT, z := x - iy the condition (UT - ky) > 0 is sufficient with (0, k) E r. This 
entails (7, y ) E f ,  f the open kernel of r. On the other hand every cone {w > c lk 1, c > 0) 
would be sufficient in (12) as indicated in the proof of corollary 2 provided K M  is 
chosen large enough. Hence F is analytic in a much greater domain, namely for c +CO 

the union of dual cones r, which are defined as the sets { (T ,  y);  UT - ky > 0 with 
(w,  k) E r,} is simply { ( T ,  y ); T > 0). Thus F is actually analytic in R4 - i{(T, y); T > 0) =: T. 

Theorem 3.  With F defined by (1 1) it is analytic with respect to ( z o ,  z )  = ( t  + iT, x + iy ) 
in the domain R4-i{(7, y); T >O}. F ( t ,  x)  are the boundary values of F ( z o ,  z )  for 
Im(zO, z )  + 0. 

Remark. The fact that one has analyticity in t when H is bounded from below was 
exploited in Hegerfeld et a1 (1980) to infer e.g. support properties of eigenfunctions 
in Schrodinger-like theories. 

The generalisation to n-point functions is now immediate. We assumed that the 
set of {ni}-particle states is dense in X. Furthermore we showed that (H, P)  can be 
split into a direct sum Z M H M ,  Z M P M  with HM, P M  operating in the superselection 
sectors XM. Now the vector valued distribution $l(x,, t,) . . . 4: (xl, tl)n with the {iy} 
varying over the different types of particles can be written in the form 

exp(-iHc,) exp(iPx,)lLL(O) exp[-iH(t,-l - t,)] exp[iP(x,-l -x,,)]$L-, ( 0 ) .  . . a. (13) 

Each of the operators H,  P in the exponents standing in between the creation operators 
can be replaced by a suitable HM, PM when applied to the vector standing on the 
right since each of the intermediate states carries a definite mass M.  For these HM, 
PM we just derived analyticity properties, so we have the following theorem. 

Theorem 4. $: (x,, t,) . . . (xl, t 1 ) n  can be analytically continued with respect to the 
variables (x,,, c,), (x,-] -x,, t n - 1  - - i n ) ,  . . . into the domain T " ,  that is, (y,, T,) ,  (Y,-~ - 
ynr 7,-1- T,) ,  . . . E ((7, y ); T > 0}, i = 1, , . , , n. 

The analyticity properties derived above allow for a proof of a Reeh-Schlieder 
property, well known from relativistic quantum field theory. Let 0 = d x I be a domain 
in R4, I an open time interval. Let go denote the set of states generated by the 
application of creation operators localised in 6 at times t E I to the vacuum 0: 

(14) 

We want to show that this set is already dense in 2, that is in physical terms, almost 
all the relevant physics can already be generated in a finite space-time domain. 

9 0  := {lLXfn, t , ) .  * * $mfl, tdn} supp f i  c d t ,  E I. 

Theorem 5. The set 90, defined by (141, is dense in X. 

Proof. We assume the contrary. That is, let cp = ZM cpM # 0 be a vector orthogonal to 
go, hence c p ~  orthogonal to $0 1%'~. With cp # 0 there exists a c p ~  # 0. Obviously we 
can restrict ourselves to this sector XM. Let us form the scalar product 

(VMl$;(fn, t n ) .  * $ ? ( f l y  t1)n) (15) 
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with the right vector an element of ZM. We can choose the supports of fl, . . . ,f, in 
such a way that for ai varying over a small neighbourhood of 0 E R3, f!'~' have still 
their supports in O(f!"i'(x) := fi(x -ai))* 

We have proved in theorem 4 that the function F(a,, t,, . . . , altl) := 
(cpM14;(ftn), t,) . , . $;(fy1', t l ) n )  can be analytically continued to an open domain of 
(e4)" and that F(a,t,, . . . , a l t l )  are the boundary values for {Im(zP, zi)}-. 0. With our 
assumption made above, F vanishes on an open domain in (R4)" which is part of the 
boundary of T". Defining G({zP, zi}) by 

G is analytic in the tube F" with a common real boundary set with F where F = G = 0.  
Hence we can infer that G is an analytic extension through a real open boundary set 
of the function F. Since this new function vanishes on a real open subset in the interior 
of the domain of definition it vanishes everywhere in the connected component of 
this set by standard reasoning of the theory of analytic functions of several complex 
variables (see e.g. Streater and Wightman 1964). By continuity also the boundary 
values are identically zero, that is 

F(a,t,, . . . , alll) = 0 everywhere in (R4)". (17) 

By choosing the supports of the f i  appropriately and by freely shifting them we obtain, 
with the help of (17), that (cpM/4,f (x,t,) . . . 4;  (xltl)n) = 0 in the sense of distributions 
for all M, n. Smearing now with arbitrary test functions we generate a dense set in 
2 on the RHS hence cpM = 0, that is cp = 0 which proves the theorem. 

5. Space-like cluster properties and Galilei invariance 

This investigation is almost independent of the results derived above. It is the 
counterpart of similar results in the relativistic case (see e.g. Jost and Hepp 1967). 
But perhaps somewhat surprisingly a spectrum condition will not be explicitly needed. 

In (1) the transformation properties of the field operators under the full Galilei 
group were given. Smearing the fields with test functions from 9, that is, Wm functions 
which decrease strongly together with their derivatives, we can shift the action of the 
Galilei group to the test functions. While smearing with respect to space coordinates 
would be sufficient to guarantee the mere existence of the operators we have to smear 
with functions of 9'(R4) to infer differentiability properties with respect to the time. 
Denoting with 9 the dense subset of states generated by repeated application of the 
suitably smeared creation operators to the vacuum we see that this set is invariant 
under the action of the Galilei group and that repeated differentiation with respect 
to the parameters of the group (ao, a, U, a) is allowed. hence arbitrary powers of e.g. 
H, P leave 9 invaiant. This yields immediately the following lemma. 

Lemma 2. The measure (cp IdE, dE&) is strongly decreasing if cp, 4 E 9. 

Proof. With f a continuous bounded function on R4 we have 

( V I /  f ( W ,  k) dEu dEk4) ~ I I s o l l '  ll4ll supIf(w k)l 
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and 

Remark. The smearing with respect to time seems to be unavoidable: 

U ( a o )  5 4'(x, t ) f (x)a( t )  dx dt U-'(ao)  = i,b+(x, t ) f (x)6( t -ao)  dx dt (19) I 
by which the differentiability with respect to t becomes obvious since 8 E Y(R1), (a 
sufficient continuity of the operator valued distribution assumed). On the other hand, 
the possibility of repeated application of H to 4: (t,,, f,,) . . . 4;  ( t l ,  fl)n is not obvious, 
the time coordinate not being smeared. 

However, specialising to the generators Kl of the Galilei boosts GI, 1 = 1 , 2 , 3 ,  we 
see with the help of (1) that in this case a time smearing is not necessary since the 
time coordinates in the field operators are not affected. Hence, denoting with 9' the 
dense set of states generated by repeated application of the creation operators to the 
vacuum, the time coordinates unsmeared, this set is left invariant by arbitrary powers 
of the K1. 

So let f ( P )  be a bounded %"-function. With cp, 4 ~ 9 '  we have 

( U ( G I ) ~ ~ ~ ~ ~ P ) U ( G I ) $ )  = (cpIf(G;' * P ) 4 )  = (cpIf(P-Mu@l)$) (20) 

el a unit vector in the 1-direction, M the mass operator. But with 2 = 0YfM we can 
study each sector separately. The LHS is infinitely differentiable with respect to 
the components u1 of the velocity U. On the RHS we have 

Remark. Note that as a result of the nonlinear u 2  term in the exponent of (1) additional 
terms show up in the higher derivatives which prevent the final result from being as 
smooth as e.g. in the related case of the Lorentz group. The same remark applies to 
a situation where f also depends on H. 

Now we are ready to prove a strong cluster property with respect to the space 
coordinates. 

Theorem 6. With 4, $ E 9' (41U(a)$)  is strongly decreasing for la /+K).  

Remark. Note that there is no vacuum polarisation because of the mass superselection 
rule, hence (& ISZ) = 0 for M # 0. 
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and 

J (-M a,,)“ exp(ika) d ( 4  l ~ k 4 )  

is bounded by a constant C,,,.+,$ as a result of (21) and (20). Hence we arrive at 
lall”(41U(al)(I,) which is bounded for l a l l + ~  and every n. 

Since it was not necessary to smear the various time coordinates occurring in the 
states 4, (I, we can in particular specialise to the subclass of usual n-body quantum 
mechanics. Furthermore, we have seen that the range of the potential enters nowhere 
openly in the theorem also Coulomb interactions are admitted. Hence we have the 
following corollary. 

Corollary 3. Let 4, 9 be functions of 9(R3”). Then we have that (4Iexp(iHt)x 
exp(iPa)(I,) is strongly clustering for /a1 + CO. 

That is, while for t # 0 4 ( t )  need no longer be in 9’ as a result of the interaction, its 
tails remain nevertheless asymptotically small. This is an extension of a result known 
to hold for the free time evolution. 

Furthermore a short remark should be in order concerning a conjecture of Swieca 
(1967). In that paper it was argued that the (anti-)commutators of bounded operations 
should roughly decay in norm like the potential for the time coordinate held fixed, it 
should at least, somehow, be linked to the range of the potential. Our result, while 
incorporating the physically relevant expectation values of the field operators, is 
mathematically weaker than a decay in norm. But in any case there is no influence 
of the range of the potential on the cluster properties of the n-point functions. This 
is the analogue of a result known in relativistic quantum field theories but there the 
situation is a little bit nicer since the interaction is usually assumed to be local. 
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